Single Step Galerkin Approximations for Parabolic Problems

نویسندگان

  • Garth A. Baker
  • James H. Bramble
  • Vidar Thomée
چکیده

In this paper we construct and analyze classes of single step methods of arbitrary order for homogeneous linear initial boundary value problems for parabolic equations with time-independent coefficients. The spatial discretization is done by means of general Galerkin-type methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Galerkin Approximations of Abstract Parabolic Boundary Value Problems

Galerkin approximations of an abstract parabolic boundary value problem with "rough" boundary data are considered. The optimal rates of convergence in Lp[0T; L2(ti)] norms for L [07"; L2(T)] boundary terms are derived.

متن کامل

A Quasi-Projection Analysis of Galerkin Methods for Parabolic and Hyperbolic Equations

Superconvergence phenomena are demonstrated for Galerkin approximations of solutions of second order parabolic and hyperbolic problems in a single space variable. An asymptotic expansion of the Galerkin solution is used to derive these results and, in addition, to show optimal order error estimates in Sobolev spaces of negative index in multiple dimensions.

متن کامل

Error Analysis of Linearized Semi-implicit Galerkin Finite Element Methods for Nonlinear Parabolic Equations

This paper is concerned with the time-step condition of commonly-used linearized semi-implicit schemes for nonlinear parabolic PDEs with Galerkin finite element approximations. In particular, we study the time-dependent nonlinear Joule heating equations. We present optimal error estimates of the semi-implicit Euler scheme in both the L norm and the H norm without any time-step restriction. Theo...

متن کامل

Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics

In this paper we consider Galerkin-finite element methods that approximate the solutions of initial-boundary-value problems in one space dimension for parabolic and Schrödinger evolution equations with dynamical boundary conditions. Error estimates of optimal rates of convergence in L and H are proved for the accociated semidiscrete and fully discrete Crank-Nicolson-Galerkin approximations. The...

متن کامل

Nonconforming Wilson Element for a Class of Nonlinear Parabolic Problems

This paper deals with the convergence properties of the nonconforming quadrilateral Wilson element for a class of nonlinear parabolic problems in two space dimensions. Optimal H and L2 error estimates for the continuous time Galerkin approximations are derived. It is also shown for rectangular meshes that the gradient of the Wilson element solution possesses superconvergence, and that the Lx er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010